
11. NUMERICAL TECHNIQUES 

Abstract — Uniform magnetic field problem is widely 
appeared in the validation at developing finite element 
software, and so on.  However, it is difficult to realize the 
uniform magnetic field in distorted hexahedral isoparametric 
elements. Then, authors introduced the subparametric 
elements. Furthermore, the reduced integration of Gauss-
Legendre quadrature is applied to the first-order 
isoparametric hexahedral edge elements to improve the 
uniformity. In this paper, we discussed the effectiveness of 
various techniques to realize the uniform magnetic field. 

I. INTRODUCTION 

It is important to analyze the uniform magnetic field 
problem for the validation at developing software using the 
finite element method. The accurate computation of 
uniform field is strongly required in, for example, the 
imaged domain of MRI equipment. Therefore, some 
higher-order elements have been proposed [1] – [3]. 
However, the discrepancy of the discretization order 
between coordinates and magnetic vector potentials in the 
isoparametric hexahedral elements unexpectedly makes 
numerical error in the uniform magnetic field problem. 

Then, one of the authors introduced the subparametric 
element discretized by the second-order edge-based shape 
function for the magnetic vector potentials and the first-
order nodal shape function for coordinates [4]. On the other 
hand, a reduced integration technique [5] is successfully 
applied to the structural analysis of plates and shells. 
However, the paper regarding the application of reduced 
integration to the uniform problem is not reported yet. 

This paper examined the performance of higher-order 
elements and the reduced integration in the uniform field 
problem, and these effective characteristics are discussed. 

II. DISCRETIZED ELEMENT 

A. Second-Order Edge Hexahedral Element 

When the vector shape function Nke is defined by the 
second-order hexahedral edge element, one of the 
serendipity type of edge-based shape function can be 
expressed as follows: 
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where , ,  are the local coordinates, respectively. (1) is 
for edges on element’s edges, and (2) for edges on the 
element’s surface. While the term   in the second-order 
subparametric element is calculated by using the first-order 
nodal shape function, it is defined by using the second-
order shape function in the isoparametric elements. 

B. Reduced Integration 

When the isoparametric hexahedral element with the 
first-order is applied to the magnetic field analysis, integral 
points of 222 or 333 is generally adopted. However, it 
is difficult to realize the uniform magnetic field in distorted 
elements. Then, a reduced integration technique [2] is 
introduced in the first-order isoparametric hexahedral 
elements. The number of integration points of Gauss-
Legendre quadrature is simply decreased to a single. 

III. NUMERICAL ANALYSIS  

A. Analyzed Model 

Fig. 1 shows the two analysis models. The model (a) 
shows the simple cube, in which the flux density in the z-
direction is defined as 1 T. The model (b) shows the 
spherical magnetic material model. The theoretical flux 
density in the spherical body is 2.994 T when its relative 
permeability r is set at 1000. However, this theoretical 
value is not rigorously estimated because of not taking 
magnetic field condition of spherical body into account. 
The uniform field is realized by the boundary condition of 
vector potentials. The number of the first-order hexahedral 
elements is eight times as large as that of the second-order 
elements in both models. 

B. Numerical Results 

      Fig. 2 shows the distributions of flux density in the 
cube model. The first-order isoparametric hexahedron (iso- 
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Fig. 1.  Analyzed model : (a) cube mode. (b) spherical magnetic material 
model. 
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hexa) with 222 integral points cannot give the uniform 
field as shown in (b). On the other hand, the uniformity is 
improved by the reduced integration as shown in (c). 

TABLE I shows the analysis results of cube model. The 
number of ICCG iterations for the first-order iso-hexa with 
the reduced integration is three times as large as that for the 
first-order iso-hexa with the conventional 222 
integration. In this model, the first-order tetrahedral 
element (iso-tetra), iso-hexa with the reduced integration 
and the subparametric hexahedron (sub-hexa) give the 
enough uniformity. 

Fig. 3 shows the distributions of flux density on the 
surfaces of spherical body. The reduced integration applied 
to the 1st iso-hexa slightly improves the uniformity. While 
the sub-hexa generally realizes the uniform field, the 
second-order isoparametric element (2nd iso-hexa) fails to 
model the uniform field. However, the accuracy of flux 
density of second iso-hexa may be higher in the inner 
domain of spherical body as shown in Fig. 4 (a) because the 
magnetic reluctivity is decreased by the second-order shape 
approximation of the spherical surfaces. The horizontal axis 
of Fig. 4 (a) shows the distance of line a-b in Fig. 1 (b). 

Fig. 4 (b) shows the convergence characteristics of 
magnetic energy in the spherical body. The distribution of 
2nd iso-hexa is most close to the theoretical value because 
of the well-modelling of the spherical shape. The 
discrepancy between 1st iso-hexa (1) with reduced 
integration and 2nd sub-hexa is little or nothing, when the 
mesh size is small. The characteristic of 1st iso-hexa (1) is 
generally superior to that of 1st iso-hexa (222). 

TABLE II shows the analysis results of spherical 
magnetic material model. The CPU time of the second-
order element is about twice as long as that of the first-
order hexahedral elements. The convergence of ICCG in 
the second-order elements gets worse against the first-order 
elements because of the increase of nonzero entries. 
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Fig. 2.  Distributions of flux density in cube model : (a) 1st iso-tetra. (b) 
1st iso-hexa (222). (c) 1st iso-hexa with reduced integration. (d) 2nd 
sub-hexa (333). 
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Fig. 3.  Distributions of flux density in spherical magnetic material model : 
(a) 1st iso-tetra. (b) 1st iso-hexa (222). (c) 1st iso-hexa with reduced 
integration. (d) 2nd iso-hexa (333). (e) 2nd sub-hexa (333). 
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Fig. 4.  Some characteristics in spherical magnetic material model : (a) Bz 
in inner spherical body on line a-b. (b) convergence of energy in spherical 
material against element size (square of element width). 

 

TABLE I 
ANALYSIS RESULTS OF CUBE MODEL 

element type order of A NoE integ. points DoF nonzero ICCG ite. CPU time [s] B min [T] B max [T]
iso-tetra 114,960 - 134,574 1,137,962 86 2.8 1.000 1.000

1 131 2.6 1.000 1.000
2x2x2 40 1.7 0.945 1.017

53 3.0 1.000 1.000

932,888

sub-hexa 2,440 29,524 1,149,050

1st

2nd 3x3x3

iso-hexa 19,160 57,776

 
 

TABLE II 
ANALYSIS RESULTS OF SPHERICAL MAGNETIC MATERIAL MODEL 

element type order of A NoE integ. points DoF nonzero ICCG ite. CPU time [s] B min [T] B max [T]
iso-tetra 96,986 - 111,204 930,021 78 2.2 2.885 3.022

1 61 1.3 2.934 3.015
2x2x2 57 1.3 2.938 2.969

79 2.5 2.932 2.971
sub-hexa 79 2.4 2.953 3.007

46,790 749,650

3x3x32,000

1st

23,090 879,1232nd

16,000
iso-hexa

 


